All Issue

2018 Vol.55, Issue 6 Preview Page

Research Paper (Special Issue)

31 December 2018. pp. 527-537
Abstract
References
1
Ahn, J.M., Yim, G.J., Jung, J.W., Ji, S.W., Cheong, Y.W., Park, H.S. and Choi, S.I., 2011. Applicable effectiveness of organic mixtures for treatment of acid mine drainage in SAPS. J. Korean Society of Mineral and Energy Resources Engineers, 48(1), 34-44.
2
Bai, H., Kang, Y., Quan, H., Han, Y., Sun, J., and Feng, Y., 2013. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technology, 128, 818-822.
10.1016/j.biortech.2012.10.07023182037
3
Behum P.T., Lefticariu, L., Bender, K.S., Segid, Y.T., Burns, A.S., and Pugh, C.W., 2011. Remediation of coal-mine drainage by a sulfate-reducing bioreactor: A case study from the Illinois coal basin, USA. Applied Geochemistry, 26, S162-S166.
10.1016/j.apgeochem.2011.03.093
4
Castillo, J., Perez-Lopez, R., Caraballo, M.A., Nieto, J.M., Martins, M., Costa, M.C., Olías, M., Ceron, J.C., and Tucoulou, R., 2012. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment. Science of the Total Environment, 423, 176-184.
10.1016/j.scitotenv.2012.02.01322414495
5
Clyde, E., Champagne, P., Jamieson, H., Gorman, C., and Sourial, J., 2016. The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers Mine (California): pilot-scale study. J. Cleaner Production, 130, 116-125.
10.1016/j.jclepro.2016.03.145
6
Deng, D., Weidhaas, J.L., and Lin, L.S., 2016. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. J. Hazardous Materials, 305, 200-208.
10.1016/j.jhazmat.2015.11.04126686479
7
Hao, T., Xiang, P., Mackey, H.R., Chi, K., Lu, H., Chui, H., van Loosdrecht, M.C.M., and Chen, G.H., 2014. A review of biological sulfate conversions in wastewater treatment. Water Research, 65, 1-21.
10.1016/j.watres.2014.06.04325086411
8
Jing, Q., Zhang, M., Liu, X., Li, Y., Wang, Z., and Wen, J., 2018. Bench-scale microbial remediation of the model acid mine drainage: Effects of nutrients and microbes on the source bioremediation. International Biodeterioration & Biodegradation, 128, 117-121.
10.1016/j.ibiod.2017.01.009
9
Johnson, D.B., 2014. Recent developments in microbiological approaches for securing mine wastes and for recovering metals from mine waters. Minerals, 4(2), 279-292.
10.3390/min4020279
10
Johnston, R.B. and Singer, P.C., 2007. Redox reactions in the Fe-As-O2 system. Chemosphere, 69(4), 517-525.
10.1016/j.chemosphere.2007.03.03617521697
11
Jung, S., Ji, S., Kang, H., Yim, G., and Cheong, Y., 2012. Biotechnology in passive treatment of acid mine drainage: A review. J. Korean Society of Mineral and Energy Resources Engineers, 49(6), 844-854.
10.12972/ksmer.2012.49.6.844
12
Ko, M.S., Park, H.S., and Lee, J.U., 2016. Arsenic removal from mine drainage by biogenic FeS and feasibility study of sulfate reducing bioreactor. J. Korean Society of Mineral and Energy Resources Engineers, 53(6), 555-561.
10.12972/ksmer.2016.53.6.555
13
Lakovleva, E., Mäkilä, E., Salonen, J., Sitarz, M., Wang, S., and Sillanpää, M., 2015. Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 81, 30-40.
10.1016/j.ecoleng.2015.04.046
14
Luo, X., Whang, C., Wang, L., Deng, F., Luo, S., Tu, X., and Au, C., 2013. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chemical Engineering J., 220, 98-106.
10.1016/j.cej.2013.01.017
15
Madzivire, G., Petrik, L.F., Gitari, W.M., Ojumu, T.V., and Balfour, G., 2010. Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Minerals Engineering, 23(3), 252-257.
10.1016/j.mineng.2009.12.004
16
Martins, M., Faleiro, M.L., Barros, R.J., Veríssimo, A.R., Barreiros, M.A., and Costa, M.C., 2009. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J. Hazardous Materials, 166(2-3), 706-713.
10.1016/j.jhazmat.2008.11.08819135795
17
McCauley, C.A., O'Sullivan, A.D., Milke, M.W., Weber, P.A., and Trumm, D.A., 2009. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43(4), 961-970.
10.1016/j.watres.2008.11.02919070349
18
Neculita, C.M., Zagury, G.J., and Bussière, B., 2007. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J. Environmental Quality, 36(1), 1-16.
10.2134/jeq2006.006617215207
19
Newcombe, C.E. and Brennan, R.A., 2010. Improved passive treatment of acid mine drainage in mushroom compost amended with crab-shell chitin. J. Environmental Engineering-Asce, 136(6), 616-626.
10.1061/(ASCE)EE.1943-7870.0000198
20
Newman, D.K., Beveridge, T.J., and Morel, F. 1997. Precipitation of arsenic trisulfide by desulfotomaculum auripigmentum. Applied and Environmental Microbiology, 63(5), 2022-2028.
16535611PMC1389166
21
Park, H.S., Ko, M.S., Lee, S.H., Hong, J.H., Cho, S.H., Yu, J.Y., Jo, J.H., and Lee, J.U., 2016. Activity evaluation of sulfate reducing bacteria for the sulfate removal in the mine drainage. J. Korean Society of Mineral and Energy Resources Engineers, 53(5), 387-397.
10.12972/ksmer.2016.53.5.387
22
Sahinkaya, E., Yurtsever, A., Toker, Y., Elcik, H., Cakmaci, M., and Kaksonen, A.H., 2015. Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor. Minerals Engineering, 75, 133-139.
10.1016/j.mineng.2014.08.012
23
Sheoran, A.S., Sheoran, V., and Choudhary, R.P., 2010. Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Minerals Engineering, 23(14), 1073-1100.
10.1016/j.mineng.2010.07.001
24
Tufano, K.J. and Fendorf, S., 2008. Confounding impacts of iron reduction on arsenic retention. Environmental Science and Technology, 42(13), 4777-4783.
10.1021/es702625e18678005
25
Yoo, K., Jeong, J., Sohn, J.S., and Lee, J.C., 2006. Application of sulfate-reducing bacteria for treatment of mine drainages. J. Korean Society of Mineral and Energy Resources Engineers, 43(2),160-167.
26
Zhang, M. and Wang, H., 2014. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Minerals Engineering, 69, 81-90.
10.1016/j.mineng.2014.07.010
27
Zhang, M. and Wang, H., 2016. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Minerals Engineering, 92, 63-71.
10.1016/j.mineng.2016.02.008
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 55
  • No :6
  • Pages :527-537
  • Received Date : 2018-11-22
  • Revised Date : 2018-12-20
  • Accepted Date : 2018-12-20