All Issue

2019 Vol.56, Issue 3

Research Paper

30 June 2019. pp. 217-226
Abstract
References
1
Amankwah, R.K. and Pickles, C.A., 2009. Microwave roasting of a carbonaceous sulphidic gold concentrate. Minerals Engineering, 22(13), 1095-1101.
10.1016/j.mineng.2009.02.012
2
Ashley, P.M., Creagh, C.J., and Ryan, C.G., 2000. Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Mineralium Deposita, 35(4), 285-301.
10.1007/s001260050242
3
Awe, S.A., Sundkvist, J.E., Bolin, N.J., and Sandstrom, A., 2013. Process flowsheet development for recovering antimony from Sb-bearing copper concentrates. Minerals Engineering, 49, 45-53.
10.1016/j.mineng.2013.04.026
4
Aylmore, M. and Jaffer, A., 2012. Evaluating process options for treating some refractory ores. Alta 2012 International gold Conference, Burswood Convention Centre, Perth, Western Australia.
5
Bayca, S.U., 2013. Microwave radiation leaching of colemanite in sulfuric acid solutions. Separation and purification Technology, 105(5), 24-32.
10.1016/j.seppur.2012.11.014
6
Celep, O., Alp, I., and Deveci, H., 2011. Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline sulphide leach. Hydrometallurgy, 105(3), 234-239.
10.1016/j.hydromet.2010.10.005
7
Cook, N.J. and Chryssoulis, S.L., 1990. Concentrations of invisible gold in the common sulfides. The Canadian Mineralogist, 28(1), 1-16.
8
Deditius, A.P., Reich, M., kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J., and Ewing, R.C., 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140(1), 644-670.
10.1016/j.gca.2014.05.045
9
Deditius, A.P., Utsunomiya, S., Penock, D., Ewing, R.C., Ramana, C.V., Becker, U., and kesler, S.E., 2008. A proposed new type of arsenian pyrite: composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72(12), 2919-2939.
10.1016/j.gca.2008.03.014
10
Droppert, D.J. and Shang, Y., 1995. The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid. Hydrometallurgy, 39(1), 169-182.
10.1016/0304-386X(95)00034-E
11
Fleet, M.E. and Mumin, A.H., 1997. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182-193.
10.2138/am-1997-1-220
12
Gao, G., Li, D., Zhou, Y., Sun, X., and Sun, W., 2009. Kinetics of high-sulphur and high-arsenic refractory gold concentrate oxidation by dilute nitric acid under mild conditions. Minerals Engineering, 22(2), 111-115.
10.1016/j.mineng.2008.05.001
13
Havlik, T., 2010. Microwave leaching of chalcopyrite-possible improvement in hydrometallurgy. Metal, 64(5), 25-28.
14
Hoffman, E.L., Clark, J.R., and Yeager, J.R., 1998. Gold analysis-fire assaying and alternative methods. Explor. Mining Geol, 7, 155-160.
15
Hough, R.M., Noble, R.R.P., and Erich, M., 2011. Natural gold nanoparticles. Ore Geology Reviews, 42(1), 55-61.
10.1016/j.oregeorev.2011.07.003
16
Jotanovic, A., memic, M., Suljagic, S., and Huremovic, J., 2012. Comparison of x-ray fluorescent analysis and cupellation method for determination of gold in gold jewellery alloy. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 38(13), 13-18.
17
Kim, C.S. and Choi, S.G., 2009. Potassium-Argon Ages of the Epithermal Gold-Silver Mineralization in the Haenam-Jindo Area, Southwestern Korea. Resource Geology, 59(4), 415-421.
10.1111/j.1751-3928.2009.00108.x
18
Kim, E., Horckmans, L., Soppren, J., Vrancken, K.C., Quaghebeur, M., and Broos, K., 2017. Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues. Hydrometallurgy, 169, 372-381.
10.1016/j.hydromet.2017.02.027
19
Kingman, S.W., Corfield, G.M., and Rowson, N.A., 1999. Effect of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore. Magnetic and Electrical Separation, 9(3), 131-148.
10.1155/1999/57075
20
Kinoshita, T., Akita, S., Kobayashi, Nii, S., N. and Kawaizumi, F., 2003. Metal recovery from non-mounted printed wiring boards via hydrometallurgical processing. Hydrometallurgy, 69(1), 73-79.
10.1016/S0304-386X(03)00031-8
21
Komnitsas, C. and Pooley, F.D., 1989. Mineralogical characteristics and treatment of refractory gold ores. Minerals Engineering, 2(4), 449-457.
10.1016/0892-6875(89)90080-0
22
Lane, D.L., Cook, N.J., Grano, S.R., and Ehring, K., 2016. Selective leaching of penalty elements from copper concentrates: a review. Minerals Engineering, 98, 110-121.
10.1016/j.mineng.2016.08.006
23
Liang, J.l., Sun, W.d., Li, Y.l., Zhu, S.y., Li, H., Liu, Y.l., and Zhai, W., 2013. An XPS study on the valence states of arsenic in arsenian pyrite; implications for Au deposition mechanism of the Yang-Shan Carin-type gold deposit, Western Qinling belt. J. Asian Earth Sciences, 62, 363-372.
10.1016/j.jseaes.2012.10.020
24
Mao, S.H., 1991. Occurrence and distribution of invisible gold in a Carlin-type gold deposit in China. American Mineralogist, 76, 1964-1972.
25
Marsden, J. and House, I., 1992. The chemistry of gold extraction, Ellis Horwood, 597p.
26
Martinez, L.L., Segarra, M., Fernandez, M., and Espiell, F., 1993. Kinetics of the dissolution of pure silver and silver-gold alloy in nitric acid solution. Metallurgical Transactions B, 24(5), 827-837.
10.1007/BF02663143
27
Maycock, A.R., Nahas, W., and Watson, T.C., 1990. Review of the design and operation of roasters for refractory gold bearing materials. In; Gold '90: proceedings of the Gold '90 Symposiums, Salt Lake City, Utah, February 26 to March 1, 389-396.
28
Morishita, Y., Shimada, N. and Shimada, K., 2018. Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: significance of variation and distribution of Au/As ratios in pyrite. Ore Geology Reviews, 95, 79-93.
10.1016/j.oregeorev.2018.02.029
29
Palenink, C., Utsunomiya, S., Reich, M., Kes;er, S.E., Wang, L. and Ewing, R.C., 2004. "Invisible" gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89(10), 1359-1366.
10.2138/am-2004-1002
30
Reich, M., Deditius, A., Chryssoulis, S., Li, J.W., Ma, C.Q., Parada, M.P., Barra, F., and Mittermayr, F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EPMA trace element study. Geochimica et Cosmochimica Acta, 104, 42-62.
10.1016/j.gca.2012.11.006
31
Reich, M., kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., and Ewing, R., 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11), 2781-2796.
10.1016/j.gca.2005.01.011
32
Reich, M., Utsunomiya, S., Kesler, S.E., Wang, L., Ewing, R.C., and Becker, U., 2006. Thermal behavior of metal nanoparticles in geologic materials. Geology, 34(12), 1033-1036.
10.1130/G22829A.1
33
Simon, G., Huang, H., penner-Hahn, J.E., Kesler, S.E., and Kao, L.S., 1999. Oxidation state of gold and arsenic in gold-bearing arsenican pyrite. American Mineralogist, 84, 1071-1079.
10.2138/am-1999-7-809
34
Sung, Y.H., Brugger, J., Viobanu, C.L., Pring, A., Skinner, W. and Nugus, M., 2009. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, eastern goldfields province, western Australia. Miner Deposita, 44(7), 765-791.
10.1007/s00126-009-0244-4
35
Swash, P.M. and Ellis, P., 1986. The roasting of arsenical gold ores: a mineralogical perspective. Extractive metallurgy of Gold, a mineralogical perspective. Gold 100. Proceedings of the International Conference on Gold. Vol 2: Extractive Metallurgy of Gold. Johannesburg, Saimm, p.235-257.
36
Swash, P.M., 1988. Mineralogical investigation of refractory gold ores and their beneficiation, with special reference to arsenical ores. J. the South African Institute of Mining and Metallurgy, 88, 173-180.
37
Thomas, K.G. and Cole, A.P., 2005. Roasting developments-especially oxygenated roasting, In; Mike, D.(eds). Developments in Mineral processing, 15, 403-432.
10.1016/S0167-4528(05)15017-0
38
Tongamp, W., Takasaki, Y., and Shibayama, A., 2009. Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media. Hydrometallurgy, 98(3), 213-218.
10.1016/j.hydromet.2009.04.020
39
Veres, J., Jakabsky, S., and Lovas, M., 2010. Comparison of conventional and microwave assisted leaching of zinc from the basic oxygen furnace dust. Minerallia Slovaca, 42, 369-374.
40
Wen, T., Zhao, Y., Xiao, Q., Ma, Q., Kang, S., Li, H., and Song, S., 2017. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 7, 2594-2600.
10.1016/j.rinp.2017.07.035
41
Yan, J., Hu, R., Liu, S., Lin, Y., Zhang, J., and Fu, S., 2018. NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China: new insight into the origin and evolution of Au-bearing fluids. Ore Geology Revirws, 92, 29-41.
10.1016/j.oregeorev.2017.10.015
42
Yoshikawa, N., Xie, G., Cao, Z., and Louzguine, D.V., 2012. Microstructure of selectively heated (hot spot) region in Fe3O4 powder compacts by microwave irradiation. J. the European Ceramic Society, 32(2), 419-424.
10.1016/j.jeurceramsoc.2011.08.028
Information
  • Publisher :The Korean Society of Mineral and Energy Resources Engineers
  • Publisher(Ko) :한국자원공학회
  • Journal Title :Journal of the Korean Society of Mineral and Energy Resources Engineers
  • Journal Title(Ko) :한국자원공학회지
  • Volume : 56
  • No :3
  • Pages :217-226
  • Received Date : 2019-05-03
  • Revised Date : 2019-06-19
  • Accepted Date : 2019-06-21